

ELECTRICAL ENGINEERING I Year/ Semester I/II

			Effec Sessi	tive from	1 2	2022-2023	3
Course Code	EE103	Title of The Course	BASIC ELECTRICAL ENGINEERIN	G L	Т	Р	С
Pre- Requisite	NONE	Co-Requisite	NONE	3	1	0	4

	□ Knowledge and concept of D.C Circuit Analysis and Network Theorems Circuit.
	□ Use of Steady State Analysis of Single Phase AC Circuits AC fundamentals.
Objective	□ Knowledge and concept of Three Phase AC Circuits Three phasesystem and measuring devices.
	Basic concepts of Power System and Transformer
	□ Study of Electromechanical energy conversion devices: AC/ DC Machines.

	Course Outcomes
CO1	Know about the concept of D.C Circuit Analysis and Network Theorems Circuit.
CO2	Steady State Analysis of Single Phase AC Circuits AC fundamentals.
CO3	Know about concept of Three Phase AC Circuits Three phase system and measuring devices
CO4	Layout of Power System and transformer
CO5	Know about Electromechanical energy conversion devices: AC/ DC Machines

No	Contant	Contact	Mapped
110.	Content	Hrs.	CO
	D.C Circuit Analysis and Network Theorems	8	CO1
1	Circuit concepts: Concept of network, Active and passive elements, linear network and non		
	linear network, unilateral and bilateral elements, lumped and distributed network, sources,		
	open circuit and short circuit, source transformation, Kirchhoff's Law.		
	Loop analysis and nodal analysis, star delta transformation.		
	Network theorems: Needs of theorem, Superposition theorem, Thevenin's theorem,		
	Norton's theorem, maximum power transfer theorem.		
	Steady State Analysis of Single Phase AC Circuits	8	CO2
2	AC fundamentals: Basic terminology, Average and effective value of Sinusoidal waveform,		
	form factor and peak factor, concept of phasor, addition and subtraction of alternating		
	quantities, Apparent, active and reactive powers, power factor, causes and problems of low		
	power factor, power factor improvement methods, analysis of series RLC circuits. resonance,		
	bandwidth and quality factor in series circuit.		
	Three Phase AC Circuits and Measuring Instruments	8	CO3
3	Three phase system: Its necessity and advantages, meaning of phase sequence, balanced and		
	unbalanced supply, balanced load and unbalanced load, star and delta connections, line and		
	phase voltage/current relationship, power measurement.		
	Measuring Instruments: Types of instruments: construction and working principle of		

Name & Sign of Program Coordinator	Sign & Seal of HoD
	1

		T	r
	PMMC, MI type instruments and induction type energy meter.		
	Power System and Magnetic Circuit	8	CO4
4	Introduction of Power System: General layout of electrical power system, standard		
	generation, transmission and distribution voltage levels, concept of grid.		
	Magnetic circuit: Concepts, analogy between electric and magnetic circuit.		
	Single Phase Transformer: Principle of operation, construction, emf equation, types, losses,	,	
	efficiency, condition for maximum efficiency, voltage regulation, Introduction to auto		
	transformer.		
	Electromechanical energy conversion devices	8	CO5
5	DC Machines: Principle of operation, emf equation and torque equation of motor,		
	applications.		
	Three Phase Induction Motor: principle of operation and applications.		
	Single Phase Induction Motor: Principle of operation and applications.		
	Three Phase Synchronous Machines: Principle of operation and applications.		
Dof	pronoes Books		
Ken			
1. V	.Deltoro, "Principle of Electrical Engg." PHI, 2009		
2. M	I.A Mallick, Dr. I. Ashraf, "Fundamental of Electrical Engg," CBS Publishers, 2010.		
3. A	. Hussain, "Basic Electrical Engg" Dhanpat Rai & sons, 2007		
4. I .	J Nagrath, "Basic Electrical Engg", TMH, 2010.		

PO CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO 1	PSO2	PSO3	PSO4
CO1	3	3	2	1	1	3						3	3	3	2	3
CO2	3	3	3	2	1	1						2	3	2	2	3
CO3	3	2	1	1	2	2	3					3	2	2	2	3
CO4	3	2	2	2	3	3						2	3	2	2	3
CO5	3	1	1	1	1	2	1					2	3	2	2	3

Name & Sign of Program Coordinator	Sign & Seal of HoD

ELECTRICAL ENGINEERING II Year/ III Semester

				Effective Session	e from	2	022-23	
Course Code	EE201	Title of The Course	LINEAR NETWORK AND SYS	STEMS	L	Т	Р	С
Pre- Requisite	NONE	Co-Requisite	NONE		3	1	0	4

	• To acknowledge the students about basic laws and theorems
Objectives	• To analyze the theoretical and practical values of given circuit
Objectives	• To know about transient state and steady state
	• To acknowledge the students about stability, two port network and graph theory

	Course Outcomes
CO1	For a given network, would be able to apply the knowledge of mathematics, science, and engineering to theanalysis and design of electrical circuits, Identify, formulate, and solve engineering problems in the area electrical circuits & systems.
CO2	For a given system with dc and ac circuits, describe the different network theorems, would be able to apply, solve and verify the solutions using modern tools for lifelong learning like MATLAB.
CO3	For given a system with two port networks described in standard form, would be able to characterize, modeling, analyze, and verify the network in terms of all network parameters.
CO4	For given a system with RL, RC, and RLC circuits, would be able to understand, perform, formulate, and solve the differential equations for RL, RC, and RLC circuits and analyze the characteristics of the system.
CO5	For given a system description, would be able to explore and apply to alternate system description, and implement using basic blocks for network transfer function in s-domain and Two port networks.

No	Content	Contact	Mapped
110.	Content	Hrs.	CO
	Concept and AC Network theorems	8	CO1
1	Kirchoff's law, Source transformation, loops analysis, node analysis, super mesh and super node.		
	AC Network theorems: Superposition, Thevenin's, Norton's, Maximum power transfer theorem, Reciprocity, Substitution, Compensation, Millman's and Tellegen's theorem.		
	Transient and steady state analysis	8	CO2
2	Transient and steady state analysis for R-L, R-C and RLC circuits, Initial value and final		

Name & Sign of Program Coordinator

	theorem Use of Laplace transform in circuit analysis, Solution of differential equations. Lap		
	lace transform of complex waveform.		
	Notwork Synthesis	8	CO3
3	INCLWORK Synthesis	0	COS
5	Concept of poles and zeros, transfer function, Stability, Hurwitz Polynomial, Positive real		
	function: Definitions and properties, Synthesis of RC, LC and RL Networks using Cauer and		
	Foster I and II forms		
	Two port networks	8	CO4
4			
	Two port parameters, Inter-Conversion of two port Parameters, Interconnections of Two port		
	networks, Reciprocity and Symmetry, T-pie transformation.		
5	Introduction to graph theory	8	CO5
	Definitions: Branch, Graphs, Tree, Co- tree, Path and Loop, Concept of Planner and non		
	planner network, Incidence, Cut-set, Tie-set matrices for planer network. loop and nodal		
	analysis.		
Refe	erences Books:		
1. M	I.E.Van Valkenburg, Network Analysis, PHI		
2. J.	A.Edminister, Electric Circuits, Schaum Series, PHI		
3. W	/.H. Hayt and Jack.E.Kammerly, Engineering Circuit Analysis, Tata Mc Graw Hill		
4. A	.Hussain, Network and Systems, Khanna publications		

PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	PSO4
CO																
CO1	3	3	2	3	2	1		1	1	1		2	3	3	2	2
CO2	3	2	3	3	2	2	1	2		1		1	3	3	3	2
CO3	3	3	2	3	2	1							3	2	2	3
CO4	3	2	2	3	1			1		1		1	3	3	2	3
CO5	3	3	3	3	2	1		1		1			3	2	2	3

ELECTRICAL ENGINEERING II Year/III Semester

				Effective Session	e from	2	2022-2023	3
Course Code	EE 203	Title of The Course	Electro Mechanical Energy Conve	ersion-I	L	Т	Р	С
Pre- Requisite	NONE	Co-Requisite	NONE		3	1	0	4

	Knowledge and concept of D.C Circuit Analysis and Network Theorems Circuit.
	• Use of Steady State Analysis of Single Phase AC Circuits AC fundamentals.
Objective	• Knowledge and concept of Three Phase AC Circuits Three phase system and measuring devices.
-	Basic concepts of Power System and Transformer
	• Study of Electromechanical energy conversion devices: AC/ DC Machines.

	Course Outcomes
CO1	Know about the concept of D.C Circuit Analysis and Network Theorems Circuit
CO2	Steady State Analysis of Single Phase AC Circuits AC fundamentals.
CO3	Know about concept of Three Phase AC Circuits Three phase system and measuring devices
CO4	Layout of Power System and transformer
CO5	Know about Electromechanical energy conversion devices: AC/ DC Machines

No	Content	Contact	Mapped
110.	Content	Hrs.	CO
	Principle of Electromechanical Energy Conversion:	8	CO1
1	Introduction, Energy in electromagnetic system, Flow of energy in electromechanical devices, Energy in magnetic field and co-energy, Dynamics of electromechanical systems, singly excited systems, Doubly Excited. System.		
2	DC MACHINES	8	CO2
2	Construction, function of commutator, simplex lap and wave windings, emf and torque equations, armature reaction and commutation,Remedial measures used for reducing commutation,D. C. generator characteristics		
	DC MACHINES AND SPECIAL MACHINES	8	CO3
3	Characteristics of dc motors, testing of dc machines, Hopkinson's test and Swinburne test, dc motor starters, speed control and braking of dc motors		
	Special motors: universal motor, permanent magnet dc machines, hysteresis motor,		

Name & Sign of Program Coordinator	Sign & Seal of HoD

	reluctance motor, and stepper motor		
4	ELECTRICAL TRANSFORMER- I	8	CO4
	Principle of transformer action. Construction of two winding transformer, Equivalent circuits		
	and phasor diagrams of Ideal and real transformers, Losses in transformers, Testing: open		
	circuit, short circuit tests and Sumpner's test, per unit system, Efficiency and voltage		
	regulation		
5	ELECTRICAL TRANSFORMER II	8	CO5
	Autotransformers: Introduction, Comparison with two winding transformers, Three phase		
	transformer: Construction, phase groupings; Parallel operation, Phase transformation: Three		
	phase to two-phase, single-phase, and six-phase, Application of different types of transformer		
Refe	erences Books:	1	
1. E	lectric Machines, M.A.Mallick, IK International Pvt. Ltd New Delhi,2009		
2. El	lectrical Machinery, Fitzgerald, Kingsley (McGraw Hill),6 th Edition,2020		
3. E	lectrical Machines and their Applications, J Hind Marsh,4 th Edition,1984		
4. Fı	undamental of Electrical Machines, B.R. Gupta & V. Singhal ,New Age International Pub.,200)5	
5. El	lectric Machinery and Transformers, I.L.Kosow, PHI,2007		
6. E	lectrical Machine, I J Nagrath and D P Kothari ,TMH,2004		

PO/ CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	PSO4
CO1	3	3	2	1	1	3						3	3	2	1	3
CO2	3	3	3	2	1	1						2	3	2	2	2
CO3	3	2	1	1	2	2	3					3	2	2	1	3
CO4	3	2	2	2	3	3						2	3	3	1	2
CO5	3	1	1	1	1	2	1					2	3	1	2	2

Name & Sign of Program Coordinator	Sign & Seal of HoD

ELECTRICAL ENGINEERING II Year/III Semester

				Effective	e from	L I	2022-2023	3
				Session				
Course Code	EE-205	Title of The Course	Solid State Devices & Circuit		L	Т	Р	С
Pre- Requisite	NONE	Co-Requisite	NONE		3	1	0	4

 Understand the advancement in conductivity of semiconduct To facilitate and understand the advancement in transistor NMOS, CMOS etc. and their various types' application frequency response. To develop and analyze the performance of small sign amplifiers (Power amplifiers). How to develop concept of feedback amplifiers, their difference applications. To analyze the design considerations of the active and pavarious orders of filters and their industrial applications. 	uctors material. tors like JFET, MOSFET, PMOS, ations in Industries. Analyze the signal amplifiers and large signal fferent topologies and Implement it and their responses for different passive filters. How to develop the s. To understand the constructional
---	--

	Course Outcomes
CO1	Analyze and designing concept of special purpose diodes for different types of operation for
	industrial application purpose. Understand the advancement in conductivity of semiconductors
	material. Analysis the different regions in which BJT operates and their applications as a switches,
	amplifiers etc.
CO2	Understand the advancement in transistors like JFET, MOSFET, PMOS, NMOS, CMOS etc. and
	their various types' applications in Industries. Analyze the frequency response of these devices as
	different amplifier applications. To Understand how the gain of amplifier effected with frequency
	changes and their applications.
CO3	To develop and analyze the performance of small signal amplifiers and large signal amplifiers
	(Power amplifiers) . To understand and implement the various power amplifier in applications as
	transmitter and receiver in communication purpose.
CO4	Developing the concept of feedback amplifiers, their different topologies and Implement it for
	various applications. To analyze their stability and their responses for different applications.
CO5	To analyze the design considerations of the active and passive filters. How to develop the various

Name & Sign of Program Coordinator	Sign & Seal of HoD

orders of filters and their industrial applications. To understand the constructional difference and working of various types of oscillators. How the oscillators can be developed and their use in industries.

No	Contont	Contact	Mapped
INO.	Content	Hrs.	CO
	Diode and BJT	8	CO1
1	Special Diodes, LED, Zener, Varactor, Schotkey barrier, photo diode, and tunnel diode:		
	their constructions and characteristics. Bipolar Junction Transistors, biasing of BJT,	,	
	equivalent circuit, Transistor as a switch, cut off and saturation region, complete static		
	characteristics of BJT, Darlington pair.		
	FET and MOS:	8	CO2
2	Field Effect transistor: Structure and physical operation. Enhancement and depletion types	,	
	MOSFET, Classification of MOS: NMOS, PMOS and CMOS I/V characteristics, Biasing		
	of FET, Low and high frequency response of common source and common emitter		
	configuration, Common base and Common gate cascade configurations, CC-CE cascade		
	Amplifiers	8	CO3
3	Small signal amplifiers: BJT and MOSFET, Frequency response improvement,		
	Classification of amplifiers: Class A. Class B. Class C amplifiers. Power amplifiers, push	L	
	pull amplifiers, DC amplifier, coupling methods.		
	Feedback amplifiers	8	CO4
4	Basic concept. General feedback structure, properties of negative feedback, four basic		
	feedback topologies: series-series, series-shunt, shunt-series and shunt-shunt, determination	i	
	of Loop gain, stability analysis, wave shaping circuits.		
5	Filters & Oscillators:	8	CO5
č	Active filters. Oscillators, condition for oscillation. Basic principles of sinusoidal oscillator.	U U	000
	RC oscillators Phase Shift oscillator weinbridge oscillator Hartley and Colnitt's	1	
	oscillator. Crystal Oscillator. Operational amplifier: Characteristics and application		
Tex	t books:		
1. A	.S. Sedra and K.C. Smith, "Microelectronic circuits", Oxford University Press (India). 2. B.P	'. Singh &	& R.
Sing	h, Electronics Devices & Integrated Circuits, Pearson		
2. M	lillman, J. and Grabel, A./"Microelectronics"/McGraw Hill		
Ref	erences Books:		
1. B	ell, David A,'Electronic Devices & Circuits', Prentice Hall (India) 4th Edition.		
2. N	air, B. Somanathan, 'Electronics Devices & Applications', Prentice-Hall (India)		
Ļ			

Name & Sign of Program Coordinator

3. Ne 4. Sec	 Neamen, Donald A., 'Electronic Circuit Analysis &Design', Tata McGraw Hill. Sedra, 'Micro Electronics Circuits', Oxford University Press. 															
PO CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	PSO4
CO1	3	2	2	2	3	3	1	1	1		2	2	2	2	2	2
CO2	3	3	2	3	2	3	2						2	2	1	2
CO3	3	2	3	2	2	2	1	1			1	1	2	3	2	2
CO4	3	1	1	1	2	2	2						2	2	1	2
CO5	3	1	1	1	2	2	2						2	3	1	3

Name & Sign of Program Coordinator	Sign & Seal of HoD

ELECTRICAL ENGINEERING II Year/ III Semester

				Effective Session	e from	2	022-23	
Course Code	EE 211	Title of The Course	Electro Mechanical Energy Conve	ersion II	L	Т	Р	С
Pre- Requisite	NONE	Co-Requisite	NONE		3	1	0	4

Objective

	Course Outcomes
CO1	Knowledge of different types of three phase induction machines
CO2	Analyze the induction machines performance under loading condition
CO3	Evaluate the performance of single phase ac machines
CO4	Knowledge of three phase synchronous machines
CO5	Evaluate the performance of synchronous machines

No	Content	Contact	Mapped
110.	Content	Hrs.	CO
	INDUCTION MACHINE I	9	CO1
1	Electro-mechanical energy conversion principles: Force and EMF production in a rotating machine Classification of rotating machine; 3-phase Induction Machines: Types, construction,Introduction to windings and winding factor		
2	INDUCTION MACHINE II Production of revolving magnetic field, working principle on 3-phase induction machine, equivalent circuit, phasor diagram, Losses and power flow diagram, slip-torque curves, no load and blocked rotor tests, starting methods, speed control	7	CO2
3	SELECTED TOPICS IN ELECTRICAL MACHINES Space harmonics, effects of space harmonics; cogging, crawling, and noise.	8	CO3

Name & Sign of Program Coordinator

	Single-phase induction motors: Principle of operation; double revolving field and cross field	-	
	theories; equivalent circuit and torque-speed characteristics; Starting methods of single-phase	;	
	induction motors: split-phase and shaded pole motors. Induction generator and its	,	
	applications		
	SYNCHRONOUS MACHINES- I	8	CO4
4			
	Construction, armature reaction and two reaction theory, synchronous reactance and phasor		
	diagram, expression for power developed and power angle curve for salient and non-salient		
	pole machines, maximum power. Open circuit, short circuit and zero power factor tests,	,	
	Alternator load characteristics. Voltage regulation and its determination by synchronous	,	
	impedance and Potier triangle method.		
_			<u> </u>
5	SYNCHRONOUS MACHINES- II	8	CO5
	Synchronization of three phase alternators effect of governor characteristics on load sharing	,	
	of alternators operation on infinite bus bars active and reactive power control. Synchronous		
	motors: methods of starting synchronizing power bunting V curves synchronous		
	and the second s		
	condenser		
		<u> </u>	
Ref	Cerences Books:		
1. C	D.P. Kothari & I.J. Nagrath , 'Electric Machines', Tata Mc Graw Hill,2004.		
2. A	Ashfaq Hussain, 'Electric Machines', Dhanpat Rai & Company, 2010.		
3. F	itzerald ,A.E., Kingsley and S.D.Umans, 'Electric Machinery', MC Graw Hill,2014.		
4. P	S.Bimbhra, 'Electrical Machinery', Khanna Publishers,2003		
5. P	P.S. Bimbhra, 'Generalized Theory of Electrical Machines', Khanna Publishers ,1995		
6. I	M.G.Say, 'Alternating Current Machines', Pitman & Sons,3 ¹⁴ Edition, 1995.		

PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO1	PO1	PO1	PSO	PSO	PSO	PSO4
<u>¢Ó</u>	1	2	3	4	5	6	7	8	9	0	1	2	1	2	3	
CO1	3	2		1									2		2	3
CO2	3	2		1									2	3	2	2
CO3	3	1										2	2	3	2	3
CO4	3	2										1	2	3	2	3
CO5	3	2					1						2	3	3	2

3: 3	Strong c	contribution,	2: average	contribution,	1: Low	contribution
------	----------	---------------	------------	---------------	--------	--------------

Name & Sign of Brogram Coordinator	Sign & Soal of HoD					
Name asign of Frogram Coordinator	Sign & Sear of Hod					
11						

ELECTRICAL ENGINEERING II Year/ IV Semester

				Effective Session	e from	2	2022-23	
Course Code	EE 213	Title of The Course	Numerical Analysis and Applica	tions	L	Т	Р	С
Pre- Requisite	NONE	Co-Requisite	NONE		3	1	0	4

	Course Outcomes
CO1	Apply Numerical analysis which has enormous application in the field of Science and some fields of Engineering.
CO2	Describing and understanding of the several errors and approximation in numerical methods.
CO3	The explaining and understanding of the several available methods to solve the simultaneous equations by modern IT tools.
CO4	To solve problems in the field of applied mathematics, theoretical physics and engineering which requires computing of numerical results using certain raw data by using modern tools and follow the ethical rules.
CO5	To deal, communicate and environment sustainability with various topics like finding roots of equations, solving systems of linear algebraic equations, interpolation and regression analysis, numerical integration & differentiation, solution of differential equation, boundary value problems, and solution of matrix problems in the field of Engineering and modern life.

No	Content		Contact	Mapped			
110.	Content		Contact Ma Hrs. CC 8 CC - Raphson ethod. 3. hod, LU	CO			
	Errors and approximations		8	CO1			
1	Error definitions, accuracy and precision, round off and truncation errors						
	Roots of equations - Solution of Algebraic and Transcendental equations, Newton- Raphson						
	method, Secant method, Bisection method, Fixed Iteration method, Regula-Falsi method.						
	Finite differences- Forward differences, Back ward differences, Central differences.						
	Solutions of simultaneous linear algebraic equations		8	CO2			
2	Gauss elimination method, Gauss-Jordan method, Matrix inversion	n method, LU	ſ				
	decomposition methods, iterative method:						
	Gauss-Seidel, Jacobi's method						
	Name & Sign of Program Coordinator Sig	gn & Seal of HoD					

	Cur	ve fitt	ing												8	C	CO3
3	Intro	ductio	on, me	ethod of	of leas	st squa	are, fit	ting o	of a st	raight	line by	metho	od of le	east squ	uare,		
	chan	ge of	origin	and sc	ale, no	ormal	equation	ons for	r diffe	rent fo	rm of c	urve.					
	.	1		л	1	1		. 1	Ът		C	C	1.	. 1			
	Inter	polati	on wi	th equ	al and	1 unec	ual ir	iterval	s: Ne	wton's	Grego	bry forv	vard in	iterpola	tion,		
	New	ton's	Grego	ory ba	ackwa	rd int	erpola	tion,	Newto	on's d	1v1ded	differe	ence in	iterpola	tion,		
	Lagr	ange's	s interj	polatio	n												
	Num	erical	diffe	erentia	tion:	Newto	on's	Grego	ry fo	rward	interp	olation	form	ula to	get8	C	CO4
4	deriv	vatives	, New	ton's	Grego	ry bac	kward	interp	olatio	n forn	nula to	get der	ivatives	s, Newt	ton's		
	divid	led dif	fferenc	e inte	rpolati	on for	mula 1	to get	deriva	tives,	Lagran	ge's int	erpolat	ion for	mula		
	to ge	t deriv	vatives	3	•			C			C .		1				
	Ът	• •	• ,	<i>,</i> •	N T (1.	c	1 7	D	• 1 1	I 0'	,	1		
	Num	ierical	integi		Newt	on-cot	es qua	idratur	e forn	nula, 1	l rapezo	oldal ru	le, Sim	pson's	rule,		
	Bool	e's ru	le, we	ddle's	rule												
5	Num	nerica	l solut	ions f	or ord	inary	differ	ential	equat	tions					8	C	205
	Initia	al and	Bound	dary va	alue pr	oblem	s, Pica	ard me	thod c	of succ	esses aj	pproxin	nation,	Taylor'	s		
	serie	s metł	nod, E	uler's	metho	d, Mo	dified	Euler	metho	d, Run	ge-Kut	ta Metł	nod (Fir	st, seco	ond,		
	third	and f	ourth o	order)													
Dat	Parrama	ag Da	.]														
Kei	1 Io	es Bo	OKS:	d R E	Rulirco	h "In	troduc	tion to	Num	perical	Analys	rie" Sr	ringar	Science	2 & Ru	sinass	Modia
	I. <u>50</u> IS	BN 9	<u>001</u> an 78-1-4	7575-	592-3.	<u>n, m</u> Third	Editic	n. 201	3.	lenear	Anarys	<u>515</u> 5p	ringer	Science	e a Du	siness	meuiu,
	2. Ll	oyd N	I. Trefe	ethen a	and Da	vid B	au III,	"Num	erical	Linear	r Algeb	ra", So	ciety of	Industr	rial and	Applie	ed
	M	athem	atics,	ISBN:	978-0	-8987	13-61-	9, Illu	ustrate	d editi	on, 199	97.					
	3. C.	T. K	elley, '	"Iterat	ive Me	ethods	for Li	inear a	and No	onlinea	ır Equa	tions",	Fronti	ers in A	Applied	Mathe	matics,
	So	ociety	for Inc	dustria	l and A	Applie	d Matl	hemati	ics, Ph	iladelı	phia, IS	BN:97	8-0-898	71-352	-7, 199	95.	
		DO1	DO1	DO2	DO 4	DO 5	DOC	DO7	DOP	DOD	DO10	DO11	DO12	DCO1	DCO2	DCO2	
	PO/	POI	P02	PUS	P04	P05	PU0	P07	PUð	P09	POIU	POII	POIZ	P501	P502	P503	P504
2	CO1	3	2		1									1		1	2
-		3	2					1							2		2
-	CO2	2	-					-					2		-		2
	CO3	3	1										2		2		5
	CO4	3	2										1	2		2	2
ſ	CO5	3	2					1							3		2
L																	

3: Strong contribution, 2: average contribution, 1: Low contribution

Name & Sign of Program Coordinator

Sign & Seal of HoD

ELECTRICAL ENGINEERING III Year/ V Semester

				Effective Session	e from	2	022-23	
Course Code	EE 301	Title of The Course	CONTROL SYSTEMS		L	Т	Р	С
Pre- Requisite	NONE	Co-Requisite	NONE		3	1	0	4

Objective	•	To learn the concept of transfer function and mathematical modeling of systems. To get the knowledge of first order and second order system. To gain information of the system. To evaluate the stability of the system using Nyquist stability criterion To design the compensator and also study of state space analysis
-----------	---	--

	Course Outcomes
CO1	To learn the concept of transfer function and mathematical modeling of systems.
CO2	To get the knowledge of first order and second order system.
CO3	To gain information of the system.
CO4	To evaluate the stability of the system using Nyquist stability criterion
CO5	To design the compensator and also study of state space analysis.

No	Contant	Contact	Mapped
110.	Content	Hrs.	CO
	Input/ Output Relationship	8	CO1
1	Introduction to control system, Open and closed loop control system, Mathematical modeling		
	of physical systems, Transfer function of electrical and mechanical system, Analogous		
	systems, Block Diagram Reduction Algebra and signal flow graph, Mason's gain formula.		
	Time Domain Analysis	8	CO2
2	Time domain criteria; Test Signals; Transient and steady state response of first and second		
	order feedback systems; Performance indices; Error analysis and error constants; Relative		
	stability, Controllers, Response analysis with proportional, Proportional- Derivative (PD)		
	controller, Proportional-Integral (PI) controller and Proportional- Integral Derivative (PID)		
	controller.		
	Stability, Algebraic Criteria and Frequency response Analysis	8	CO3
3	Asymptotic and conditional stability, Routh Hurwitz criterion, Frequency response analysis,		
	Correlation between time and frequency domain specifications, Resonant peak, Resonant		
	frequency, Bandwidth, Cutoff frequency, Polar plots, Bode plots, Gain margin, Phase		
	margin.		
	Root Locus Technique and Stability in Frequency Domain	8	CO4
4	The root locus concepts, Construction of root loci, Nyquist stability criterion, Constant M		
	and N circles		
	Introduction to Design and State variable technique	8	CO5

Name & Sign of Program Coordinator	Sign & Seal of HoD

5	Design through compensation Techniques; Realization of Lag, Lead, And Lag-Lead	
	compensation; Design of closed loop control system using root locus and bode plot	
	compensation. Introduction to State variable analysis, State space representation, State	
	equations, State transfer matrices, Controllability and observability.	
Refe	erences Books:	
	1. B. C. Kuo, Automatic Control System, Wiley, 9th Edition, 2014.	
	2. I. J. Nagrath & M. Gopal, Control System Engineering, New Age International, 4th Edition, 2015.	
	3. K. Ogata, Modern Control Engineering, PHI, 4th Edition, 2002.	
4	4. S. K. Bhattacharya, Control System Engineering, Pearson Education, 2nd Edition, 2008.	
4	$\mathcal{E} = \mathcal{O} = \mathbf{H}_{1}$ $\mathcal{O} = \mathbf{H}_{1}$ O	

S. Hasan Saeed, Automatic Control System, Kataria and sons, New Delhi, 8th Edition, 2016
 Nise, Norman S., Control systems engineering, John Wiley & Sons, 2020.

РО	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	PSO4
со																
CO1	3	2		1									2	1	2	3
CO2	3	2		1									3	2	3	3
CO3	3	2										1	3	1	2	3
CO4	1	3		2								1		2		3
CO5	2	2	3									1	1		2	3

Name & Sign of Program Coordinator	Sign & Seal of HoD

ELECTRICAL ENGINEERING III Year/ V Semester

			Effectiv Session	e from	1	2022-23	
Course Code	EE305	Title of The Course	COURSE: DIGITAL CIRCUITS AND SYSTEMS	L	Т	Р	С
Pre- Requisite	NONE	Co-Requisite	NONE	3	1	0	4

	□ To understand number representation and conversion between different representation in digital
	electronic circuits.
	□ Became familiar with the digital signal, positive and negative logic, Boolean algebra, logic gates,
	logical variables, the truth table, number systems, codes, and their conversion from one to others.
	□ To analyze logic processes and implement logical operations using combinational logic circuits.
	□ To understand competence in Combinational Logic Problem formulation.
Objective	□ To understand concepts of sequential circuits and to analyze sequential systems in terms of state
Objective	machines.
	□ To understand competence in analysis of synchronous and asynchronous sequential circuits.
	□ To understand characteristics of memory and their classification.
	□ To understand concept of Programmable Devices, PLA, PAL, PLD and FPGA and implement
	digital system.
	□ To impart how to design Digital Circuits.

	Course Outcomes
CO1	Convert different type of codes and number systems which are used in digital communication and computer systems. Develop a digital logic and apply it to solve real life problems.
CO2	Employ the codes and number systems converting circuits and Compare different types of logic families which are the basic unit of different types of logic gates in the domain of economy, performance and efficiency.
CO3	Analyze, design and implement combinational and sequential logic circuits.
CO4	Analyze different types of digital electronic circuit using various mapping and logical tools and know the techniques to prepare the most simplified circuit using various mapping and mathematical methods.

Name & Sign of Program Coordinator Sign & Seal of HoD

CO5 Design different types of with and without memory element digital electronic circuits for particular operation, within the realm of economic, performance, efficiency, user friendly and environmental constraints. Classify different semiconductor memories. Assess the nomenclature and technology in the area of memory devices and apply the memory devices in different types of digital circuits for real world application.

No	Content	Contact	Mapped
110.	Content	Hrs.	CO
	Number system, codes and Minimization Techniques:	8	CO1,
1			CO2
	Decimal, Binary, Hexadecimal, Octal Number systems and their Conversions, Arithmetic		
	operations, subtraction using 1's and 2's compliment, Binary coded decimal, Excess-3		
	Codes, Gray Codes. Different types of Logic Gates and their implementation, Standard		
	representation of logic functions- SOP and POS forms, simplification of switching functions-		
	K Map		
	Logic Families	8	CO1,
2			CO2
	Introduction to different logic families. RTL, DTL, TTL, MOS. TTL inverter – circuit		
	description and operation, CMOS inverter – circuit description and operation, design of gates		
	using TTL and CMOS circuits, Electrical characteristics of logic gates	_	
_	Combinational logic systems, Modules and their applications	8	CO3,
3	Desis la sis seconda en la sis seconda Dese des Malcislanes De secolúmbres Desider		CO4
	Basic logic operation and logic gates, Decoder, Encoder, Multiplexer, De-multiplexer, Parity		
	circuits and comparators, Arithmetic modules- Half Adder, Full Adder, Half Subtractor, Full		
	Subtractor, Carry Look Anead Adder, Serial Adder, BCD adder	0	<u> </u>
4	Sequential logic systems, Modules and their applications	8	CO3,
4	Sequential Circuits- Latches and Flin-flons Transition Excitation table Excitation mans and		CO4
	equations Counters Shift registers 555 timers Multivibrator		
5	Memory and Programmable logic devices	8	CO5
5	iviendry and i rogrammable logic devices	0	005
	Read only memory, read/write memory- SRAM and DRAM. PLAs, PALs and their		
	application, Sequential PLDs and their application, Introduction to Field Programming Gate		
	Array.		
Refe	erences Books:	1	
1. R	.P. Jain, "Modern Digital Electronics", TMH, 4th Edition, 2010.		
2. M	Iorris Mano, "Digital Design", PHI, 3rd Edition, 2014.		
3. R	. J. Tocci, "Digital Systems", PHI, 4th Edition, 2016.		
4. M	alvino and Leach, "Digital principles and applications", TMH, 8th Edition, 2014.		
5. J.	M. Yarbrough, "Digital Logic-Application and Design", PWS Publishing, 5th Edition, 2006		
6. B	. S. Nai, "Digital Electronics and Logic Design", PHI, 7th Edition, 2012		
L			

Name & Sign of Program Coordinator	Sign & Seal of HoD

PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	PSO4
СО																
CO1	3	2	2	2		1	2	1		1		1	2	2		2
CO2	2	3		2	2	1	3			1	1	1	2	3	2	2
CO3	3	3	3	2	2						1	1	3	3	3	3
CO4	2	3	3	2		2	2			2	3		2	2	3	3
CO5	1	2	2	2	2	2		3			1		2	2	2	3

Name & Sign of Program Coordinator	Sign & Seal of HoD
	10

ELECTRICAL ENGINEERING III Yeer/VI Semester

				Effective Session	e from	1	2022-23	
Course Code	EE-313	Title of The Course	Microprocessor and Peripheral Devices		L	Т	Р	С
Pre- Requisite	NONE	Co-Requisite	NONE		3	1	0	4

Objectives	 Knowledge of I/O devices and memories To get knowledge of architecture of 8085 and 8086
	 To attain knowledge of different instruction set of 8085 and 8086
	• To study about different types of Programmable Peripheral Interface
	• To have the knowledge of analog to digital and digital to analog converter chips

	Course Outcomes
CO1	Understand the basics of microprocessor
CO2	Understand the architecture of 8085 and 8086
CO3	Knowledge of instruction set of 8085 and 8086
CO4	Knowledge of programmable peripheral interface
CO5	Knowledge of analog to digital and digital to analog converter

No.	Content	Contact	Mapped				
	Introduction of Microscomputor SystemsConcered definition of minicomputer	пгs. о	CO_1				
1	Introduction of Microcomputer System: General definition of minicomputer,	0	COI				
1	microprocessors, CPU, I/O devices, clock, memory, bus architecture, tri-state logic, address						
	bus, data bus and control bus.						
	Semiconductor Memories: Development of semiconductor memory, internal structure and						
	decoding, memory read and writes timing diagrams, ROM, RAM.						
	Architecture of Microprocessors: Introduction of Intel 8085 and 8086 microprocessor,	8	CO2				
2	Pindescription and their internal architecture. Introduction of Intel 80386.						
	Operation and Control of Microprocessor: Timing and control unit, memory read/write						
	machinecycles, I/O read/write machine cycles, interrupt acknowledge machine cycle.						
	Instruction Set: Addressing modes- Data transfer, arithmetic, logical, branch, stack	8	CO3				
3	andmachine control groups of instruction set, unspecified flags and instructions.						
	Assembly Language Programming, Assembler directives, Subroutines						
	Interfacing: Interfacing of memory chips, Interfacing of I/O devices, I/O addressing-	8	CO4				
4	I/Omapped and memory mapped I/O schemes, 8257(DMA Controller), 8259(Interrupt						
	priority Control),						
	8253/8254 Programmable timer/counter with modes of operation.						
	Interrupts: Interrupt structure of 8085 microprocessor.						
5	Programmable Peripheral Interface: Intel 8255, pin configuration, internal structure of a	8	CO5				

Name & Sign of Program Coordinator	Sign & Seal of HoD

portbit, modes of operation, bit SET/RESET feature, ADC and DAC chips and their interfacing.

Programmable Interval Timer: Intel 8253, pin configuration, internal block diagram of counter andmodes of operation, counter read methods.

References Books:

1.B.Ram, "Fundamentals of Microprocessor and Microcomputer", Dhanpat Rai Publication, 4th Edition.2008 2. M.Rafiquzzaman, "Microprocessors and Applications", John Wiley & Sons ,2008

3. Hall D.V., "Microprocessor and Interfacing-Programming and Hardware", 2nd Ed., Tata McGraw-Hill Publishing Company Limited, reprinted 2008

4. GaonkarR.S., "MicroprocessorArchitecture, Programming and Applications", 6th Ed., Penram International, 2013.

PO CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	PSO4
CO1	3			1	1	1	1					3	3	3	2	3
CO2	3	2	2	2	2	1						3	3	3	2	3
CO3	3	2	2	2	2	1						3	3	2	2	2
CO4	3	2	2	2	2	1	1					3	2	2	2	2
CO5	3	1	1	1	1	1	1					3	3	2	2	3

Name & Sign of Program Coordinator	Sign & Seal of HoD

Name & Sign of Program Coordinator

Sign & Seal of HoD